ECE1 : Devoir à la Maison n°9

On considère les mêmes matrices que dans le devoir à la maison n°8 :

$$I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

Première partie

- 1. Montrer que : $A^3 = A^2 + 2A$.
- 2. Montrer que, pour tout entier n supérieur ou égal à 1, il existe un couple (a_n, b_n) de nombres réels tel que : $A^n = a_n A + b_n A^2$, et exprimer a_{n+1} et b_{n+1} en fonction de a_n et b_n .
- 3. a. Montrer, pour tout entier n supérieur ou égal à $1:a_{n+2}=a_{n+1}+2a_n$. b. En déduire a_n et b_n en fonction de n, pour tout entier n supérieur ou égal à 1.
- 4. On rappelle que $A = PDP^{-1}$, avec

$$D = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 2 \end{pmatrix} \quad P = \begin{pmatrix} -1 & 0 & 2 \\ 1 & 1 & 1 \\ 1 & -1 & 1 \end{pmatrix} \quad P^{-1} = \frac{1}{6} \begin{pmatrix} -2 & 2 & 2 \\ 0 & 3 & -3 \\ 2 & 1 & 1 \end{pmatrix}$$

Retrouver l'expression de Aⁿ.

Deuxième partie

Soit \mathcal{E} l'ensemble des matrices $M \in M_3(\mathbb{R})$ telles que AM + MA = 0

1) Montrer que \mathcal{E} est un sous-espace vectoriel de $M_3(\mathbb{R})$

On rappelle que
$$AM + MA = 0 \Leftrightarrow M = \begin{pmatrix} 0 & 0 & 0 \\ 0 & e/2 & -e/2 \\ 0 & -e/2 & e/2 \end{pmatrix}, e \in {\rm I\!R}.$$

2) Déterminer une base de \mathcal{E} .